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ABSTRACT
| | /6§30

Effects of electron-ion and electron-electron correlations on
plasma oscillations have been studied by obtaining an approximate
solution for the ﬁfst two members of the BBGKY hierarchy, Electron- ‘
ion correlations are shown to be especially important, for they produce,
in the long wavelength limit: (1) a damping independent of wave number
ki (2) a small correction to the plasma wave frequency which is inde~
pendent of wavelength and thus modifies the Langmuir plasma frequency,
The damping which is wavelength independent predominates over
Landau damping and is in close agrecement with the damping obtained
from high frequency conductivity c:alculations.“t-7

For both the damping and the dispersion relation, electron-
electron correlations are found to appear first in terms proportional

to kz. "These terms, as well as the kz terms from electron-ion

correlations, have also been computed, Our results are compared

1

with those made previously, ﬁ
.. Wy i




Introduction

There have been several attempts recentlyl_3 to examine the
effects of pair correlations on plasma oscillations by using the BBGKY
hierarchy, In all of these cases, however, only electron-electron
correlations were considered and electron-ion correlations were
ignored. It was found by all of these authors that, in the long wave-

length limit, the largest damping was proportional to kz, where k is

m e e o

the wave number, Also, it was foundl' 2 that there is a small correction
to the plasma wave frequency which is proportional to kz. Both
Ichikawa1 and Willis2 approximated the equation for the two electron
corrclation function by dropping numerous terms, Furthermore, S
although they solved the same equation, they obtained considerably
diffcrent numerical results, Gorman and Mont:gomery3 have obtained
a more complete solution for the damping but have not yet presented
numerical results,

We have also used the BBGKY hierarchy to study the effect of
pair correlations on plasma oscillations, Although our solution of the
binary correlation equations is approximate, our analysis is more
complete than either Ichikawa or Willis, both by considering electron-
ion correlations and by including in the electron-electron correlation
equation many terms which they dropped, We have obtained, in the
long wavelength limit:

1, A damping independent of wave number I zcsulting from

electron-ion correlations;

2. damping proportional to kz from both electron-electron

and electron-ion correlations;
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3. a small correction to the usual plasma frequency resulting

from electron-ion correlations which is indepeﬁdent o{f wave -
length;
4, corrections to the dispersion relation which are proportional
f e to k?.
- A damping independent of the wave number has been found pre-
) viously4"7. All of these authors obtained the high frequency conductivity
from which, as shown by DuBois, Gilinsky and Kivelaonb. the plasma'
‘wave damping can be determined. In references 4, 6 and 7, diagram-

matic techniques were employed for the calculation, while in reference (5)

the solution of the BBGKY hierarchy for a homogeneous plasma with an
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externally applied oscillating electric field was used, Thus far, only

the conductivity o{w) which is independent of wavelengih has been given

o e g e

*
explicitly . For the infinite ion mass limit, the results of these authors

are in agreement, The numerical result for the damping obtained from

[P

the conductivity4 is in reasonably good agreement with the result which
we have obtained, Further discussion of this matter will be given in
Section IV,

In Section II, we present the basic mathematical formulation,
The approximations used to solve the pair correlation eqﬁatious are |
introduced and a separation of collisional and collective correlations
is affecteds In Section III the plasma wave damping and the diepersion
relation are computed in the long wavelength and infinite ion mass limits

and a discussion of the results is given in Section IV,

w ;
According to reference (6), the result proportional to k2 published 1
earlier by these authors® is not correct,




It S i 2ol aaiet AL e M bt SRS LELEY

prm———m o &t i e

bttt Tl e B L e e e M B S § i . 2 T T e - L TR

;
i e st e — e 4 . [

Mathematical Formulation

We consider a gas of electrons and ions interacting only through
Coulomb forces, The ions are assumed to be uniformly distributed and
immovable with respect to the high frequency electron oscillations and
to be in thermal equilibrium with the electrons in the absence of electron
oscillations, The BBGKY hierarchy used to deacribe such a system can
be truncated by an expansion schcme,(}’lo although the expansion paramecter
is not unique, To first order in the plasma parameter g = (X%n)-l. the
inverse number of particles in a Debye sphere, the first two members

of the hierarchy can be written in linearized form as
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where £, g, and § are the perturbed one-electron distribution function,

electron-electron and electron-ion correlation functions, respectively,

— o —

The arguments r, R, v, "—f., m, M, nand N refer respectively to the

olecctron and ion position, velodty, mass and number density.

*®
a is the absolute value and Z is the atomic number of the ions,

The chargpe

Cther

X
We consider one kind of ion only, To extend our discussion to a plasma

with many kinds of ions is straightforward.
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quantities appearing in equations (1), (2) and (3) are given as follows:
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The quantities £°, F°, gfz and sz are,respectively, the equilibrium

values for the distribution functions and the electron-electron and electron-

ion correlation functions,

(4a)

(4b)

(4c)

(4d)

(4e)

(4£)

(4g)

The exact solution of the singular integral equations (2) and (3)

can be obtained formally as discussed in references(11) and (12),

How-

cver, hecaunse of the complexity of the solution, it is difficult to obtain

numerical results and to obtain physical insight into the results,

Thus,

we will give an approximate treatment to the integral terms on the right-

hand side of equations (2) and (3) which will make the analysis more

tractable, Noting that, in equilibrium,
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we write 8y, in the form
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- and, for the integral terms in equation (2), assume that the last term in

equation (5) is negligible. Similarly, for the integral terms in equation (3)

we use the approximate solutibn?
Gz ' = - ZXg,f{rp Ve IFO(V,) (6) *

With these approximations, and using the relation
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An approximate solution similar to this was used by Kadomtsevl? His
equations, however, were not linearized,
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The first term on the right-hand side of these equations represents
direct two-particle interactions, These terma are responavible. in the
homogeneous case.m - the main atructure of the Fokker;-Planck type
collision integral. They will be referred to henceforth as the collisional

correiation'terms. On the other hand, the remainder of the terms on the .

right-hand side of equations (8) and (9) rcpresent integrals of two-particle -

interactions via a third particles They will be referred to as collective

a, b

g *tg and Q - n? 4 (‘l.b whoym: swnsne. -

g L 1 v an

scripts a and b refer to the sqlutions of the collisional and collective

-

phrta respectively.
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Following the ideas of Bogoliubov, 14 we assume that the relaxation time
of the collisional correction function is short compared to the relaxation
time of the onc-electron distribution function, In fact, we wili assume
it is shorter than the period of a plasma oscillation so that, on the
relaxation time scale for ga(t) and (}a(t), f(t) can be assumcd
stationary. After a short tima the effect of the initial correlation is

forgotten and, on the relaxation time scale of f we will only need the

asymptotic value for ga and Qa, which we call g?o and Q‘Z). Explicitly,

equation {0) will be replaced by
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where, by 8y We mean (1) for the calculation of ga'(t) and ’Qa(t) we
will assume f is stationary in time; and (2) we will then take the limit
t— oo, | | ;

In the study of plasma oscillations in the long wévelength limit,
it is reasonable to assume that the inhomogeneities in the density occx;;-
with a characteristic length many times larger than the Debye distance,
However, the collisional correlation terms represent direct interactions
which occur almost entirely withiﬁ a Debye distance., (Note that X12
contains a shielding factor.) Thus, we will assume that ga(;;. ;;. cee) =
ga( ﬁ;-?z l. .s ). and Qa(? ’EZ' cee) = Qa( rﬁ-—ﬁzl. ..) and that, for the
study of these quantities, f(?. ees) can bei asaumed spatially uniform.

We now introduce the Fourier-Laplace transforms as follows:
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Employing the inverse transforms, equation (il) can be rewritten

as .

(see next page) |
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where, for the collisional correction terms, we have utilized the fact

that
iol;i—:r;) ("1‘*’)8 (kl’ Vls W = 8 (kl' 1° t) . . (16)
Taking the Fourier-Laplace tran‘sforms of equations (8) and (9),
we obtain
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In equations (19) and (20) it ia to be noted that, in accordance with earlier

remarks, the explicit time and space dependence of the perturbed one-
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clectron distribution function has been retained, Also, because of the
spatial homogeneity, f(?z.vz, t} has been replaced by f(;{,-v.z.t).

Finally, substituting equations (17)-(20) into equation (15), we obtain

8§ —~ 8 — — "1 "“*’t —_ 8 j
(-5- S:’) f(ryyvppt)= - S'dwgdk plkppw) = of (vl)k1¢(kl)
S| Bvlf
3 .
1 2 ondil U a 1 :
+(£) o Sdk de (T +¥ ) |
2w/ °p 2 2 T VNI ee ei :
[w+(kl-k2) V1+k2 VZ] :
0 3 » - —i—lslu—r. — ’
4 R (1> %Sd?dzce gd 1 g> -f
w41r(21r) v, Q%2 V2 [t e,y vy] O |

~ q !
* S‘ Va [w+(’1€1.‘£2).”'1+"}€1.{1'2] QO}’

2
(5 22 &) -f’:»{ gl (y)x O

1

@

— —t - a a e a a—tn  — o
ngvzéflt.f (vl-vz)]( ;_i,-f -;_;, )[f(rl, vl,t)f (v2)+f(rl, Vo t)f (vl)]
1 2

+ ZSdV 6[?1 (v -V )] (——1- LAl :VZ f(r t)Fo(VZ)} (22)

whe re \Ilee and ‘Ile% are those terms contained in { } bracket in

equations {17) and (18), respectively. It is to be noted that the principal

1

value integral associated with the operation lim —p—r =
- - P y—0 k,e (v1-v?) - iy
imd[ xsz \v1 "2 } +=e~ez———— vanishes becausc

kZ (vl-vz)
the integrand of the k2 integral is antisymmetric.

Finally, by taking the Fourier-Laplace transformation of equation

(22), a straightforward calculation leads to the result ]
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The path of integration for the —\71 integrals has been discussed
by Landau.15 We have found that, for the computation of Ise and Is‘l
(s =1,2,3), in the long wavelength limit, the indented part of the Landaun
contour only gives small, high order contributions, Thus, we will
simplify our discussion of these integrals by replacing the Landau contour,
which is in the complex u = ("1?1-71)/k plane, by the real axis,

In Section III, the relationship of equation (23) to the damping and

the dispersion relation for electron plasma oscillations will be developed,
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and Ili

shown that within certain approximations, these quantities are inde-

Then the collisional terms Ile will be studied and it will be

pendent of pﬁzl. w)s All of the I terms will be evaluated and, finally,
numerical results for the damping and the dispersion relation will be

given,

Mumerical Calculations
It is seen by examination of equation (23) that the dispersion

cquation is given by

1-1- Ile— Ili- IZe- 121 i I3e‘ I3i =0 (25) ‘
Following the method presented by Jackson16, we expand ’
1(__ 1Y ~._E { S’du 8T°(u) 1 o 800) .
k, I, [} I3 ou - T :
(st 5) Y |
i §°w) 1
——k—ly- P\du 3 } (26)

W, 2
(u +E_)

where we have defined w = wr+ iy and assumed a priori that '(,J,{; <<1

Mo
Tu) is defined by T(u) _3
-co

as k — 0. The quan d“v*L fo(vl)

where vl ig the two=-dimensional vector component of V; normal to 1‘1

Substituting equation (26) into (25) and setting real and imaginary
parts equal to zero, we obtain
W s
__P 8f ~(u) 1 - -
1 = P S.du 5 m Re(l, + I+ I, + 1,413 +1) (27a)
1 ( u+ T—)
!
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2
S ) ., +9m(l, +1.+1, +1, +1, +1,.)
Y= klz“ Ju r Me™ i7" “2e 1217 3e’ “3i

) |
%) =0 -1
X [é PS‘du gtia 1 ] (27b)

w_ 2
(o)
Using the dispersion relation, equation (27a), it can be shown that

2
W TO(u)
;?PS‘duauL(Iu (u+;)£>2=

( kl dwr >-1

go that, in the long wavelength limit,
2 2
W =l 1+ 1:1._+.°-J3l Rell, +1.+1 +I.+1I, +1..)] (28)
roptT kZ 2 Ve 1Ii T2e 21 "3e 731 '
p @
P
") dw =0
vee (g ) e T
2k r k’l U= -
1 k1
w kl dw
r r
5 (- o, "'121") Im(L + 1,41, + T4 T+ 1) L (29)

2 3
where Kk, = 2712
RT

a) Contribution from the Collisional Part

According to the definitions given in Section II,

+ f(l-_:la—‘;zr w)fo(.vl) ]

+ szdvza e (vy= V)] ke (-5_;; hma$>f(ﬁ' vis WF (VZ)} (30)
1 2
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where an integration by parts on —v’l has been performed and the value

of x(kz) has been used. Define g =~v.1— :2 and —G’=-\:1- ‘\72. Write

_1:2 = kzﬁz = k2(122”+ EZ.L)’ where ﬁz is a unit vector in the direction

of -1—;2, EZH is the component of 122 parallel to E (or E) and 1221_

is the component perpendicular to E (or a). Writing —1;2 in cylindrical

coordinates and performing the k integration we find

21
i(—z-l-ﬁ)2 w‘; >~ 1 +Kmax Ky,
I1= > 2 3 dvy = 2 S deJ. T2 L2 d¢
Zp(kl. w wn ( kl' vy 0 kZ.L+ kD
1+

{g —Rl TR ( = f_;. \[fﬁi.:{. Wffv,) + f(";?.l,?fz.w)f"(vz)]

1 2

S‘dvz a &k &y ('?—'hr‘/x’n : £y, vy “’)FO(Vz)} (31)
v,

where, to prevent a close collision divergence in the k integration,

we have cut off the integral. For electron-electron encounters the usual
-1
cut-off is taken to be the Landau distance kL (-’%‘). the average distance
e
of closest approach for a binary collision, For electron-ion collisions,

however, where the formation of bound states is a possibility, the cut-off
is not well defined, One possible cut-off suggested in references {(4) and
(6) is the de Broglie wavelength k (ZmKT « Presumably, if
the particles do not approach closer than this distance, and 1:,},1 >> T
the range of the nuclear forces, a bound state will not be formed,

Performing the kZ.L integration, and using the fact that

2 — —
1 g___-gg
gf‘”%ﬁu ST
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where } is the unit dyadic, we obtain

——

4

N 1) “p (k — 1

5= () £ %S dv
p(kl.w) wn

D

1 (1+~£1;~v'1 2

1)
'S».... g°1-8 8
X; dvzkl'——-—-——-

1 2

’%;‘ -9—_; ) f(k-ls Vlo w)Fo(V )
v v
1 2
where kM = kL

for electron-electron collisions and k
electron-ion encounters,

M kT for
Utilizing the relation
—;[g (a-D) - (g

il » (v -v,)

— — 1

(g-2)(g*b)] =——2-Sd31e bz
mw

and the one obtained by changing g — G, equation (32) can be written

H“’
Im

_.) [£(K}, ¥y v
8v1 Ov

8 — —t
G(VZ) 'E.;;. f(l‘-fls Vla w) g (34)
!

where for convenience, we have taken the infinite ion mass limit
o -

M

. m_, o,
B(Vz). Note that vy has been broken into two components,
u and Vu. The first is parallel to kl and the second is normal to it.

(32)

(33)

5‘2__, VRV, () + €,V )2 ()]
v
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To go further we shall approximate f by its Vlasov equation

solution, This is justifiable since we only require our results accurate

to first orderin € = -%—- « (cf. ref, 3). Recall that the integration

\An
path for the u integralis along the real axis. This is equivalent to

taking the principal value integral for u, where w= W . In the long
wavaelength limit, keeping terms up to order kla, the ..;2. —\:1 and 1

integrations can be performed straightforwardly in that order, with the

result
3 ~3 2,2 '
. W k k w kl k
= - 1 -2 .—I_) 32‘_/;2111 1 —.I +—-2 [E—Q In 1 ....I
I 323w 1z (777_‘; ) 2 52 |73 (7'2';( )
D r 7D D
k
2 1 7L
+ In e (35)
o ()
where _
22 4mne? 1,2
D~ KT - 2D ’
Then
~3
w wZ k k
. kl dw, - D T
e (- @) my=-2p Fmeronh
r digy 12v2 kp
| 9z 2 1?13) | K,
,,3/2 652 % no Kp
W 2 k k
p 1 k™ ™D, , L '
“1F 3 =z om o mleTon=)y . (36)
] kD kD .

kl des,

The positive contribution arises from the factor (1 - e -a-k—) and from
3 r _
the expansgion of the factor :g which appears in front of the wavelength
w'
independent term,

TR T

£

AT Y Ry g STy

o~

e ks

el VLI i e e I iR Te o L aa g nde 2ol
B T o

e e g e g e e P L ST O Y e AR BT
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(b} Contribution from the Collective Part

From Section 1], IZe and IZi can be rewritten

4 — — . — — —t :
. —1_>3 :’P_ S‘di’ kl- k2 = 1 S\oodt i[ wt( A-kz)-vllt i
2e T 2 2 2 1 ™ e ‘
) g T ek Y |
e, o v, t 9t°(v,) 9°(v.) E

— %'V, - Y . == .0 2
X dvze [1x (xz)f (vz)kl —8—--— +1x(lk1—k2[)f (Vl)_—_t_—] (37) ;

vy Vs

3k

« kl 2 — 0 1w+(—. 2)-
L= -2(L) ;1“\2 (&, e —Ly § et

R e e

ik.*V.t 9£°(v,) aF° (V)

- 2 2 o -— 1 !

X\ dv,e ix (k) F (V) ks e - (lk KO (vy) e |

S 2 [1 2 )% o vy v, 1 |
(38)

Letting :1 = uﬁl +_{;1.!. where ﬁl is a unit vector in the direction

Eed

. of kl' and ~V’LL is the component of _\:1 perpendicular to 1?1, it is a

straightforward calculation to perform the —\;2 (and VZ) and _‘_':LL

integrations, In the infinite ion masa limit we obtain ;

2.2
kot™B
1\Z ¥ 2 (2-g?
T2e = - (’2‘%‘?) 2 g dt dkzdgkzge
r
o i[ w+(k1-k2§)u] t
X P‘) Aut2(u) & kﬁl > [(kl-kzg)tx (kz)
Ut )
2ik x (k,) .0
i U4 2L Rt ] (39)
w_(1+—)
r W




)

K2t%p(1-£2)

4
2 ©
=-z(L) -2 2
L, = z(Z") . S‘dt\g‘ dic, dE K, e X (k)
r
. el[ o Hk, -k €)u] t 2ik,
X P\ duf (u) — [(kl—szs)t + -—-—-’—R-l-u—"- (40)
1+~ ) w (1 + ———
w r
r r
KT kK
where 3 = = € kll and where, in accordance with earlier remarks,
2

We now perform a long wavelength expansion, noting that

kl%zu2 .} if Lo-sz,u] t

i wH(k, -k, E)u]t [
ewﬁ<2u'—‘-'1+ik.ltu-~ > _Je

B}

and 2
- - 2k k. & - L
x (1K, ) = x ) | 1 +"'k1"“22" 'z<1""
L .kD + kZ .

After performing the u and £ integrations, in that order, we find

2e

(%) 1+y 1+
2 .3
w_. k3 ~ 2 .2, 2
s 2y B R ferrem oy o
3 W - 1ty
mz 1?2 1:3 o ~ o2 2 2.2
- ._.%_- ...E. ;12. .—?g\ dTTOlm‘S dY‘—l—' e..y T
2n® Wt x5 " Yo 0 1+y?
-~ ]
xl%_z:'r__g_y~;r +4i¥'7+YTJ
w 5w
where = -(%’— s T=wt, and y = kZ/kD' It is seen that a term independent
p

of k‘l survives for the ion part whereas, because of cancellation, this term

does not appear in the electron part,

z '
) k : 2 2.2 :
I. = - 2i - P k1 D Sd'relm'r dy y e—Zy T [ i

(41)

(42)

PR

e e et e
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All of these integrals can be reduced to two types, viz.

P e gt il
M S d're =i —:,i—ﬁi-

and
oo iQr_j (™ -yz'rz

N, =§ dre™ Ty 5 dy s (43)
0 0 1ty

~

where =\-(7“’-2 for the integrals in I, —and Q=w for the integrala in
121. Tho integrals Nj can be performed analytically, 7The method for
doing this is given briefly in Appendix A, It will be treated in greater
detail in a future publication,

After coneiderable labor, we obtain the resulta
2

9 k1 Ky
I, = -5 —-72 [0.48 +10,97] (44)
w, 1
D
2 2 .2 33
w AT W kl k
S S . _2 HETRE S S
L, b —57z(0.0475 +i-£ 0.0308]- z-5 = & —rzl-0.2120
w, ™ W kD i
- 10,1681] , (45)
The reduction of the terms I3e and I3i follows exactly the same
procedure just outlined for I, and I?i' Hence we only give the results:
corz) kl2 I<13) 1
R LA S .0 2012 !
138 "‘“'Z ~7 T —372L 0.2012 +i 0 03211 (‘16)
w, k2 ™
r "D
2,273
© k
1,.= -7 _,P)_ ~ _B __3‘-_;,)_ [~ A o ', RT VY (47)
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contribution independent of k 1is found.

Collecting all of these terms we now obtain

2

“p !

Yy = == (1-3 1—-- ) Im (I + 12i+ I3e+ 131)
D
AN 'k;) w k.f .:%)
a ~0,031 57 3/2,1-;’2-—5— [1 OO+01582] (48)
g \D
2 ~3 2 §3

k

w Z D kl D }

9 - {1 - Bpo.0a1s 2 43 L {1 - (0. 0929 + 0.0734Z) -!T] (49)
wp T kD e

Part of the kz contribution to the damping was obtained by expanding a

factor ‘*’I?;/“’Zr which appeared in the lowest order term of IZi’

Discussion and Conclusions

The effects of electron-ion and electron-electron correlations on
the damping and dispersion relation of plasma oscillations have been
studied by use of the BBGKY hierarchy, We have seen that the linearized
cquations for the electron-ion and electron-electron correlation functions,
which are integro ~differential equations, could be simplified by substituting
an approximate solution of these functions into the integral terms, It was
then possible to aeparate the correlation functions into a collisional part
and 2 collective part, each gffecting the plasma oscillations in different
wayn.

In order to facilitate further discussion, wec summarizc our

results as follows:
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, Yg Ya Y Yy - ( k'r)
T b=t et D — In(0.92 —=
b %9 % %D % /2122 kp
2 ~3
k2 & Kk X
1 DI- 1 ( T 1 L ]
PR Z 1n(0.363 =F ) - — In (1320 = (50)
N WYL k ) 1503/2 ( K )
D D D
3 ~2
\/] 1/2 kp kp 3
= @) 2 ew (%) ew(-3) (50a)
p k3 21
~3 2 ~3
Ya z ) Ko 3 02y z &5 B k
— = - —='1nl0,707 == ) + - S == —= 1n (0,707 =<
@, ‘““37““'.21‘2 wfz- n ( kn) (’6 ‘6) ‘/—' 2;7"‘5 2 :12) n ( :D>
2 ~3
k k.
1 &5 kp 9
- : —% —= 1n (0,707 (50b)
s v e 0T
~3 2 ~3
ALY -_37-5____ E-l?m (1.30)--37-2-2—— :12 -1-:-91:'1 (1. 95)
“ o2 ¢ w/Cev2 kp 7
2 ~3
- _1.3-72 1;12 D 1, (1870) (50c)
15« kD n
~3 2 ~3
2 & i &
{2 by, AT, ) LR
7-{(1 ~y 0. 0475 )+3 =5 [1 (0.0929 + 0.07342) n] (51)
mp T kD
2\1/2 2,1/2 b 2
cTemmn n = (dTDE . T . (4mme ] - (?Jmlu)‘-, _fe_ )
wagre “'p‘(\ m ) : kD" . .‘{T) ! kT" o 'kL"(ch}'

The damping y, is the usual Landau damping which can be obtained in

e "celf consistent field” theory; y, is the damping resulting from

i

collisional correlation effects, and y, ie the damping which regults from
collective correlation effects. In equation (50), the combined effect of

these terms is given.
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We see that pair correlations affect plasma oscillations in
several striking ways. Most important is the appearance of a damping
which does not vanish in the limit k — 0, and which will be the principal
damping mechaniam for k <<}kD‘ The presence of this term emphasizes
the importance of electron-ion correlations, even in the infinite ion mass '
limit, for electron-electron correlation damping is proportional to kz. l

The result which we have found can be compared with the result

~3

k k
X. 5 1 D on(o.74 L
B 12y2 p3/2 D ( kD)

obtained from Perel and Elia.shberg4 *. The agreement is seen to be
quite good especially in light of the ambiguity in the upper limit cut-off,
Another interesting effect of electron-ion correlations, as seen
from equation (51), is the small correction to the Langmuir plasma
frequency which has not been discussed previously. It seems reasonable
to interpret this correction as a small increase in the effective mass of
the electrons, Also, we observe that the correction which is proportional

to k“xlz) is negative.

We have alrcady mentioned that Ichikawa.1 and WilliaZ studled the
effects of electron-clectron correlations on plasma waves, The electron-
electron correlation ecquation which they solved is found by dropping all
but the self-consistent field terms from equation {2}, Thus the terms
responsible for dynamical shielding (the integral terms) have been neglected :

and the terms responsible for the main structure of the Fokker-Planck

g :
Their conductivity is related to our damping according to y= 2w Re tr(mp). i

S e T R s T e T Riimanaialas 2bud



cquation have been dropped., The results which are equivalent to theirs
are found from our IZe calculation, The comparison of the results can

be made from the following list:

2
2 _ 2 K f eZA)
w ..wp[1+3--£2 (1+a. n(———KT) ]
D

2 |

23
Y =Y, + bw = dn(—%—r)

j 212)
a=1,05 b= -~-0,028 Ichikawa
a=9,2 = ~-17. 6 Willis
a=-1,2795 b= -3.89 Present Authors

where Yy, is the classical Landau damping which is a negative quantity.
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APPENDIX A

We wish to evaluate the integral

2.2
00 . . (300 =Ty
N. =S d'reIQTTJS. dy Sy (A-1)
J 0 0 1ty
We write
2.2
© -7y 2
S dy 2 > = —’ZI- e’ erfc T (A-2)
0 1+y
where
2 T xZ
erfcT = |1~ dx e
-3 ],
Let p = - i2, Then
TZ
Nj = %S{Tje erfc 'r} (A-3)

where & is the Laplace transform operation.

From formula (5), page 176, of reference (17), we find

1
x{e7erﬂ:J%}=h——4;———- (A-4)
Vp (Vp +1) .
Then, using formula (23), page 131, of reference (17), we obtain
o) j ZZ
S i lyh Z T Z .
Ny = § Can e o T2 (4-5)
where
. 2 4K A
27 d -Z
H,(Z) = (-1)e e
e

Although p is complex, the real part, which gives a damping, leads

only to higher order corrections for the damping and dispersion. Thus

- ien
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we get p = -~ i} where § is now taken as real. Then
2
GP Ve 1 o n E
b2 @l LYo zé+Q J
. f _ ZZ '
+ lng az ..___-ZZ e E H.(%) (A-6)
0 yARLY) ! )

These integrals have been computed for 2 =1 and 1/\[2 and j=0,1,2,3,4,5

and the results will be given in a future publication,
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